







# Détection et suivi des interfaces à potentiel d'instabilité du manteau neigeux à l'aide d'un radar portatif

Jacob Laliberté

Par













## Introduction

- Popularité plein air augmente (ski, motoneige, escalade, etc.)
  - Pratiqués en montagne sur terrains pentus et enneigés
  - Pentes 30 à 45°
  - Exposent les pratiquants aux dangers d'avalanche



Ref: http://nyskiblog.com



Ref: <a href="http://decouvertesmag.com">http://decouvertesmag.com</a>



Ref: http://www.motoneigeauquebec.com



## Introduction





#### Élément déclencheur



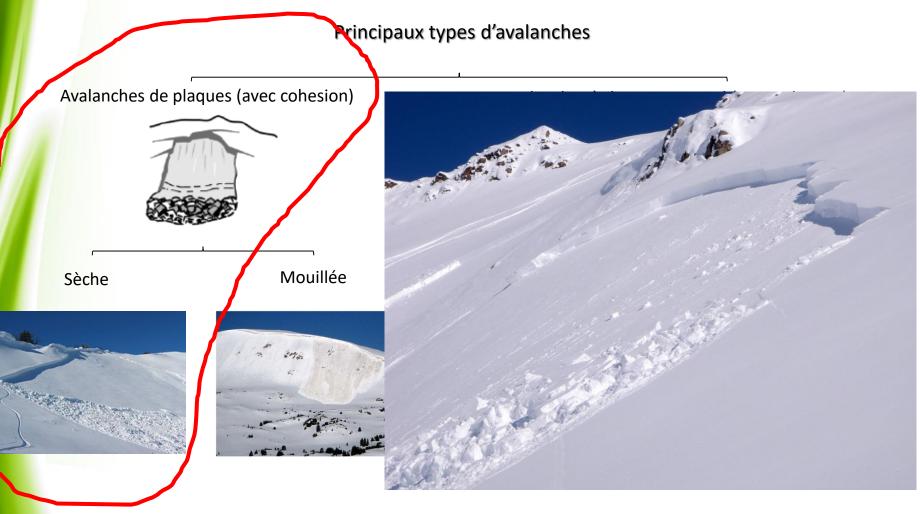




Danger + élément à risque = risque d'avalanche

- + de personnes en montagne =
  - plus grand danger et risque d'avalanche
  - plus grand territoire à couvrir




- Importance suivi stabilité du manteau neigeux pour sécurité publique
  - Stratigraphie
    - Varie temporellement et spatialement

- Méthodes de prévision traditionnelles demandent beaucoup de temps et de déplacements
  - Nouveaux outils d'aide à la décision





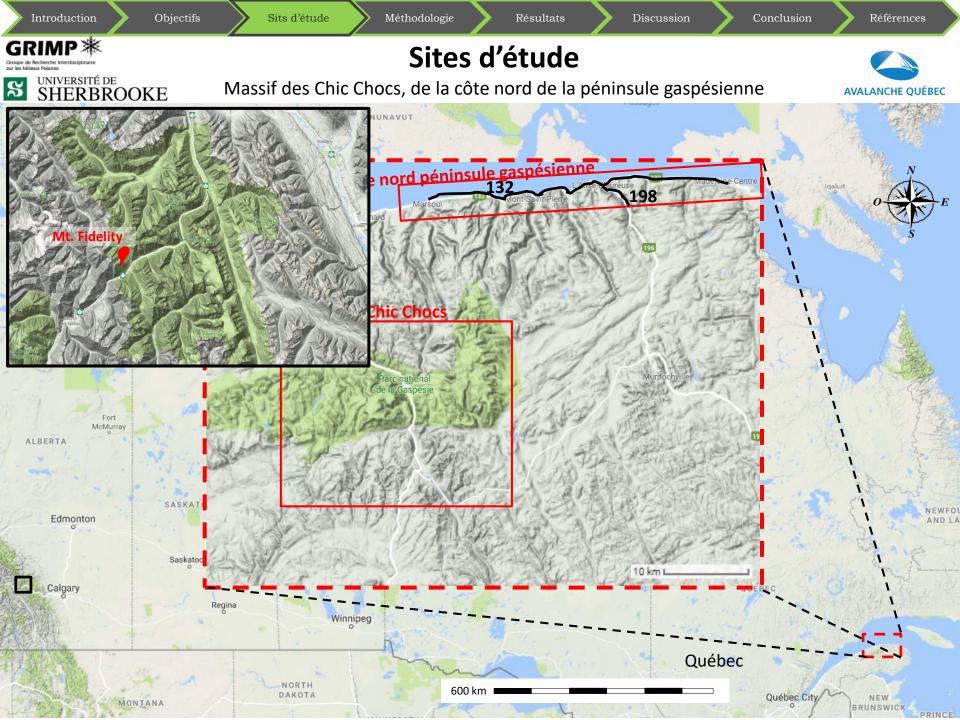




## Avalanches de plaque de neige sèche

Neige cohésive + couche faible + plan de glissement




- Plans de glissement :
  - Croute
  - Vieille neige durcie
  - Sol
- Principales couches faibles :
  - Grains faces planes
  - Givre de surface
  - Givre de profondeur





## Objectif

Développer une méthode efficace de détection et de suivi des interfaces instables du manteau neigeux à l'aide d'un dispositif radar.



Introduction Objectifs Cadre théorique Matériel Méthodologie Résultats Conclusion Références

## Données

#### Données de télédétection



Radar FMCW

#### **Données de validation**



SnowMicroPenetrometer (SMP)

9

#### **Données météorologiques**



Stations météorologiques + Bases de données



Stratigraphie

<mark>26/06/2018</mark>

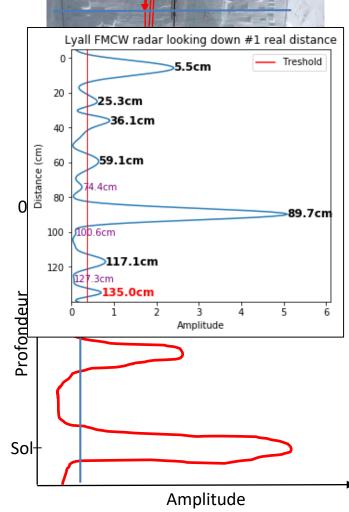


## Radar FMCW Fonctionnement

- Envoie une onde
  - Réfléchie par les objets
  - Calcul la distance radar-objet

$$D = \frac{1}{2} V \Delta t$$

D : Distance radar-objet


Vs : Vitesse de propagation de l'onde

 $\Delta t : \mbox{Temps} \mbox{ de propagation aller-retour}$ 

→ Divise par deux

- Détecte les changements diélectriques
  - Interfaces à grand changement de propriétés
    - » Densité
      - Taille des grains
      - · Forme des grains





Introduction Objectifs Cadre théorique Matériel Méthodologie Résultats Conclusion Références



#### Radar FMCW

#### Avantages

- Rapide
- Non destructif
- Portatif

Très petit (9,8cm x 8,7cm x 4,3cm)

Léger (280g)

- Faible coût











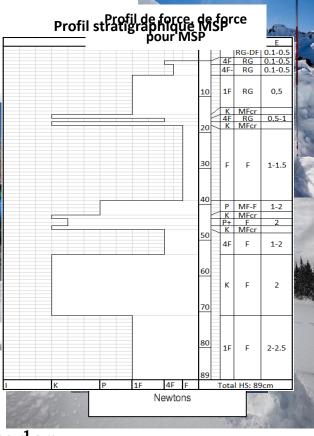


#### Collecte de données terrain

- Données de télédétection (Radar FMCW)
  - Mobile
    - À ski différents endroits sur le territoire
    - Vers le bas et vers le haut
    - Avec et sans plaque

#### -Fixe

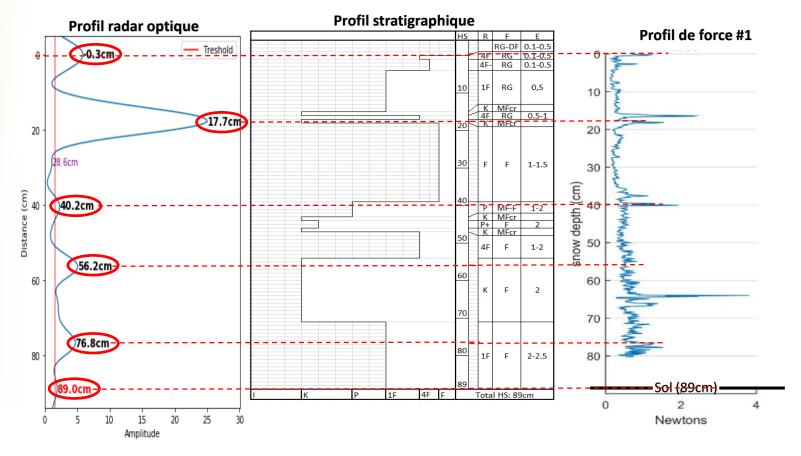
- -Couloir d'avalanche Manche d'Épée (route 132)
- -Vers le haut
- -Données horaires
- -SR50





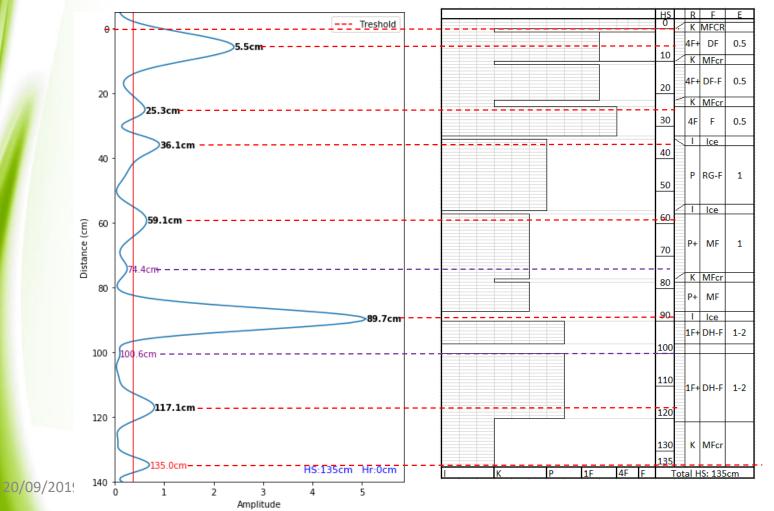

#### Collecte de données terrain

- Données de validation
  - 1. SnowMicroPenetrometer (SMP)
    - Profil de force
  - 2. Stratigraphie
    - -Température
    - -Densité
    - -Forme des grains
    - -Taille des grains
    - -Humidité
    - -Résistance
    - -Hauteur de neige (HS)






-Servent à calibrer et valider les données radar


## Résultats Comparaison radar, stratigraphie et SMP

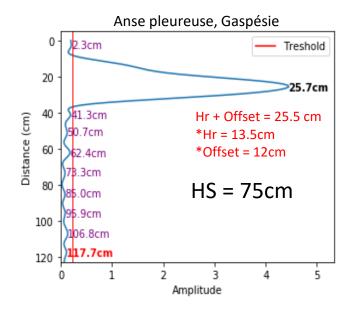
#### Mont-Saint-Pierre



## Résultats Comparaison radar, stratigraphie et SMP

Stationnement mine d'agates du Mont Lyall

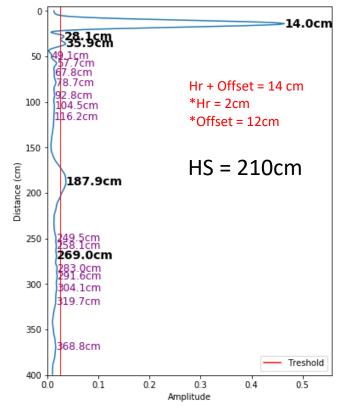



Introduction Discussion Conclusion Références

#### Résultats

#### Atténuation du signal dû à l'humidité de la neige

Radar très sensible à l'humidité





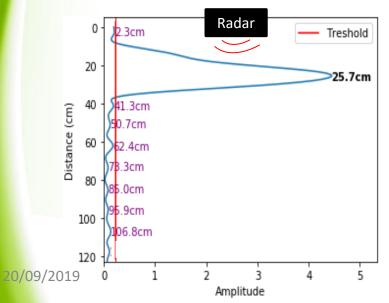

#### Surface s'humidifie en premier

Pertinence radar orienté vers le haut

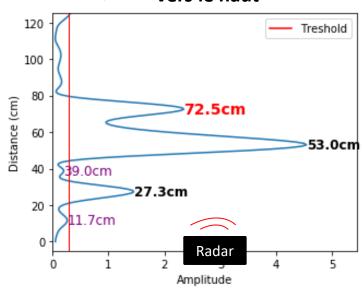




#### Résultats


#### Radar orienté vers le bas et vers le haut

 Vers le haut donne information stratigraphique que profil vers le bas ne voyait pas

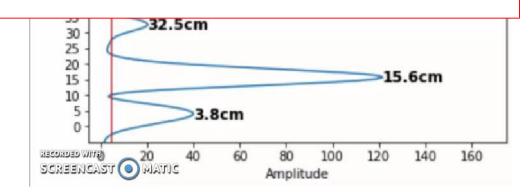

Confirme potentiel utilisation radar vers le haut



#### Vers le bas

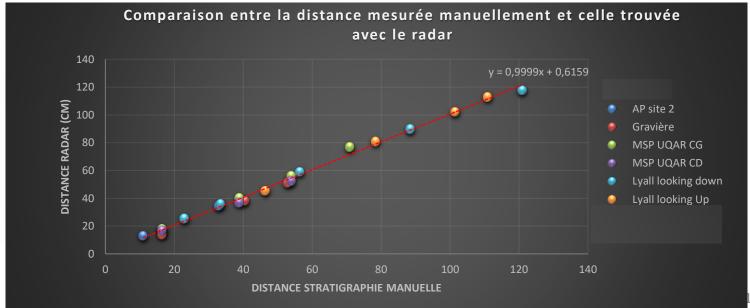


#### Vers le haut




### Résultats Comparaison radar, stratigraphie et SMP

- Manche d'épée (Temporel)
  - EXPÉRIMENTAL




- Évaluation visuelle encourageante
- Reste à évaluer son potentiel à détecter les croûtes (statistiquement)
  - Évaluation de sa précision

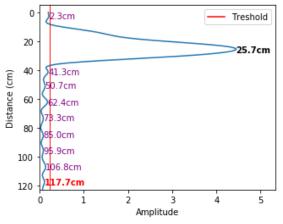


#### Résultats Sensibilité du radar

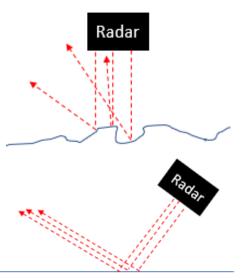
- Comparaison 6 profils différents
  - Précision
    - X → Profondeur de la croûte mesurée manuellement sur le terrain
    - Y → Profondeur de la croûte calculée avec le radar
    - Peut s'attendre à une précision d'environ 2cm
      - » Sites où conditions idéales



#### Résultats Sensibilité du radar


- Comparaison 6 profils différents
  - · Omission & commissions
    - Peu de commission (2)
    - Beaucoup d'omissions (14/35)
       Important de distinguer les types d'omissions





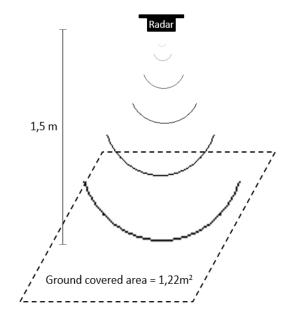

## Discussions

- Importance mentionner qu'il y a des profils qui ne fonctionnent pas du tout
  - Problème :Manteau neigeux trop épais ou trop humide
    - » Voit pas pic sol
      - Connaît pas HS radar et donc pas n moyen
    - » Solution: Radar mutli-fréquence pourrait aider (Koh et al. (1996))



- Problème: Angle de visée et rugosité du sol
  - » Réflexion spéculaire ou diffuse
    - Perte de signal
  - » Solution: Radar perpendiculaire au sol et choix des sites (Hogs Back)






## Discussions

- Importance mentionner qu'il y a des profils qui ne fonctionnent pas du tout

- Problème : Erreur systématique → Translation
  - » Causes
    - Placement règle
    - Hr
    - Traitements données SMP
    - Etc.

- Problème: Champs de vision du radar
  - » Ouverture de 24° par 65°
  - » Grande Couverture spatiale
    - © Données
    - 😕 Validation
      - 5mm SMP
      - Quelques cm profil strati



## Conclusion

- Nous avons réussi à:
  - Comprendre l'interaction de l'onde radar avec la neige

Cadre

théorique

mettre en place une méthode de détection des interfaces à grand contraste de propriété à partir d'un radar FMCW de 24  $\overline{GHz}$ 

- Radar FMCW a un bon potentiel a identifier les interfaces à grand contraste de propriété
  - Encore beaucoup de travail à faire pour que ce soit opérationnel
    - Passe le flambeau
  - Serait bénéfique d'améliorer la résolution
    - Meilleure précision
    - Near crust facet?















## Merci!!!





## Références

Avalanche Canada (2017) 2016-17 Annual Report. 54 p.

Cadre

théorique

- Bartelt, P. et Lehning, M. (2002) A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model. Cold Regions Science and Technology, vol. 35, n°3, p. 123-145.
- CAA (2016) Observation guidelines and recording standards for weather, snowpack and avalanches. Canadian Avalanche Association. Revelstoke, Canada.
- Colbeck, S. C. et Jamieson, J. B. (1980) The Formation of Facet Layers above Crusts. Cold Regions Science and Technology, vol. 33, n°2-3, p. 247-252.
- Côté, K., Madore, J. B. et Langlois, A. (2017) Uncertainties in the SNOWPACK multilayer snow model for a Canadian avalanche context: sensitivity to climatic forcing data. Physical Geography, vol. 38, n°2, p. 124-142.
- Fortin, G., Hétu, B. et Germain, D. (2011) Climat Hivernal Et Régimes Avalancheux Dans Les Corridors Routiers De La Gaspésie Septentrionale (Québec, Canada). Climatologie, vol. 8, p. 9-25.
- Gauthier, F., Germain, D. et Hétu, B. (2017) Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada. Natural Hazards, vol. 68, p. 1-32.
- Germain, D., Filion, L. et Hétu, B. (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change, vol. 92, n°1-2, p. 141-167.
- Germain, D. et Voiculescu, M. (2007) Les avalanches de neige dans les Chic-Chocs (Canada) et les Carpates Méridionales ( Roumanie ) Bilan des connaissances et perspectives futures. Revista de geomorfologie, vol. 9, p. 17-31.
- Hétu, B. (2007) Les conditions météorologiques propices au déclenchement des avalanches de neige dans les corridors routiers du nord de la Gaspésie, Québec, Canada. Géographie physique et Quaternaire, vol. 61, n°2-3, p. 165-180.
- Jamieson, B. et Langevin, P. (2005) Faceting above crusts and associated slab avalanching in the Columbia Mountains. Proceedings ISSW 2004, n°September, p. 112-120.
- Jamieson, J. B. et Johnston, C. D. (1992) Snowpack characteristics associated with avalanche accidents. Canadian Geotechnical Journal, vol. 29, n°5, p. 862-866.
- Koh, G., Yankielun, N. E. et Baptista, A. I. (1996) Snow cover characterization using multiband FMCW radars. Hydrological Processes, vol. 10, n°12, p. 1609-1617.



#### Références

- Madore, J., Langlois, A. et Côté, K. (2018) Evaluation of the SNOWPACK model's metamorphism and microstructure in Canada: a case study. Physical Geography, n°May, p. 1-22.
- Marshall, H. P. et Koh, G. (2008) FMCW radars for snow research. Cold Regions Science and Technology, vol. 52, n°2, p. 118-131.
- Marshall, H. P., Koh, G. et Forster, R. R. (2005) Estimating alpine snowpack properties using FMCW radar. Annals of Glaciology, vol. 40, n°1998, p. 157-162.
- Marshall, H. P., Schneebeli, M., Koh, G., Matzl, M. et Pielmeier, C. (2005) Measurements of snow stratigraphy with FMCW radar: comparison with other snow science instruments. Proceedings ISSW 2004. International Snow Science Workshop, Jackson Hole WY, U.S.A., 19-24 September 2004, n°303, p. 57-63.
- McClung, D. et Schaerer, P. (2006) The Avalanche Handbook (Vol. 3).

Cadre

théorique

- Meloche, F., Gauthier, F., Langlois, A. et Boucher, D. (2019) The Northeastern Appalachian Rainy Continental snow-climate: A Transitional snowclimate type for the Gaspé Peninsula, Québec, Canada. Cold Regions Science and Technology (Soumis).
- Pomerleau, P. (2016) Conception d'un dispositif de caractérisation de la glace et de la neige à partir d'un radar à émission continue. Mémoire de maîtrise, Université de Sherbrooke, 85 p.
- Proksch, M., Löwe, H. et Schneebeli, M. (2015) Density, specific surface area, and correlation length of snow measured by high-resolution penetrometry. Journal of Geophysical Research: Earth Surface, vol. 120, n°2, p. 346-362.
- Sadiku, M. N. O. (1985) Refractive index of snow at microwave frequencies. Appl. Opt., vol. 24, n°4, p. 572-575.
- Schneebeli, M. et Johnson, J. B. (1998) A constant-speed penetrometer for high-resolution snow stratigraphy. Annals of Glaciology, vol. 26, p. 107-111.
- Schneebeli, M., Pielmeier, C. et Johnson, J. B. (1999) Measuring snow microstructure and hardness using a high resolution penetrometer. Cold Regions Science and Technology, vol. 30, n°1-3, p. 101-114.
- Stethem, C., Jamieson, B. et Schaerer, P. (2003) Snow avalanche hazard in Canada—a review. Natural Hazards, vol. 28, p. 487-515.
- Techel, F. et Pielmeier, C. (2011) Point observations of liquid water content in wet snow Investigating methodical, spatial and temporal aspects. Cryosphere, vol. 5, n°2, p. 405-418.
- Tiuri, M., Sihvola, A., Nyfors, E. et Hallikaiken, M. (1984) The complex dielectric constant of snow at microwave frequencies. IEEE Journal of Oceanic Engineering, vol. 9, n°5, p. 377-382.

